Advanced Laboratory Testing Methods – SIRFN Project Activity

Georg Lauss; Roland Bründlinger;

AIT Austrian Institute of Technology,
EES, Energy Department,
Vienna, Austria;

SIRFN meeting, Kyoto 2014, Japan, “Advanced Laboratory Testing Methods“
Index of Contents

- **Introduction**
- **Advanced Laboratory Testing**
  - Methods
  - Equipment
  - Expertise
- **Use Cases Proposal (SIRFN Project Activity)**
  - RLC – Anti Islanding Testing (PHIL)
  - LVRT – Ride Through Testing (PHIL)
  - ICT – Communication emulation (CoSim, CHIL)
- **Next Steps & Invitation**
Utilizing novel ideas and novel methods for advanced laboratory testing

- **Motivation:**
  - Utilizing and exchanging the sophisticated know-how of international experts
  - Different methods and various approaches already exist on a global basis

- **State-of-the-Art:**
  - Test/simulation approaches are expanded and optimized due to the latest technologies (real time systems, power electronics, analogous/digital measurement devices..)
  - Novel simulation techniques get increasing importance in research and for manufacturers and for international standardisation groups

- **Intentions and Aim for Cooperation:**
  - Know-How exchange on an international level
  - Manifestation of effectuated methods for the solution of different problems
  - Creation of a work basis for future contributions to
    - Rapid prototyping and manufacturing
    - Standardized testing procedures (writing and testing)
    - Novel research areas in the electrical domain
Index of Contents

- Introduction
- Advanced Laboratory Testing
  - Methods
  - Equipment
  - Expertise
- Use Cases Proposal (SIRFN Project Activity)
  - RLC – Anti Islanding Testing (PHIL)
  - LVRT – Ride Through Testing (PHIL)
  - ICT – Communication emulation (CoSim, CHIL)
- Next Steps & Invitation
Proposed methods for advanced lab’ testing

- **Power Hardware-in-the-Loop (PHIL):**
  - Suitable for investigations on HuTs with feedback of the true power signals
  - Dynamic behaviour of the PA, Choice of interface algorithm (IA), measurement equipment
  - Stability considerations (Nyquist, Popov, Ljapunow criterion)
  - Measurement equipment used (I/O, transducers)

- **Controller Hardware-in-the-Loop (CHIL):**
  - Suitable for investigations of the control board only (pre-standardisation, communication test procedures, etc.)
  - Highly automated test sequences, no risk of high power flows

- **Multi-Domain Simulation / Co-Simulation (MD/Co-Sim):**
  - Suitable for investigations of various other control / communication circuitry integrated into the test system
  - High degree of flexibility, possibility of integrating various control loops into CHIL / PHIL environment
Power Hardware-in-the-Loop (PHIL) Simulation

The implementation of PHIL tests environment enforces the use of a dedicated power amplification units (PA).

- **Inherent ‘closed-loop originality’ of PHIL simulation characterised by:**
  - Time delay introduced by real-time system (RTS)
  - Dynamic behaviour of the PA
  - Choice of interface algorithm (IA)
  - Measurement equipment used (I/O, transducers)

- **Consequences:**
  - Stability considerations (Nyquist, Popov, Ljapunow criterion)
  - Choice of PI / IA (accuracy, stability, …)

- **Power Interfaces (PIs) have to chosen according to the application in PHIL**
Controller Hardware-in-the-Loop (CHIL) Simulation

Controller Hardware-in-the-Loop (CHIL):
- Suitable for investigations of control boards only (pre-standardisation, communication test procedures, etc.)
- High degree of automated test sequences, no risk of high power flows
- Well-defined real time capable operating systems and integrated libraries (SimPower Systems, propr. Libraries, etc.)

Source: autonomie.net

Source: The Mathworks
Multi Domain Simulation / CoSimulation

- Multi-Domain Simulation / Co-Simulation (MD/CoSim):
  - Suitable for investigations of various other control / communication circuitry integrated into the test system
  - High degree of flexibility, possibility of integrating various control loops into CHIL / PHIL environment

Source: www.ni.at

Source: Lawrence Berkley National Laboratories

Source: www.v2v2.at
Index of Contents

- Introduction
- Advanced Laboratory Testing
  - Methods
  - Equipment
  - Expertise
- Use Cases Proposal (SIRFN Project Activity)
  - RLC – Anti Islanding Testing (PHIL)
  - LVRT – Ride Through Testing (PHIL)
  - ICT – Communication emulation (CoSim, CHIL)
- Next Steps & Invitation
Equipment PHIL / CHIL

Components and machinery used / required for PHIL / CHIL / Co Simulations for electrical circuits:

- **Power Amplification Unit**
  - Switched mode amplifiers (lower BW)
  - Linear amplifiers (higher BW)

- **Real Time Computing System**
  - Standard real-time capable machines

- **Measurement devices**
  - (current/voltage)

- **Component Modelling Libraries**
  - Passive (R, L, C, grid impedances, nonlinear devices)
  - Active (PV inverters, converters, motor drives)
Equipment PHIL / (CHIL) - Test Setup

Test stand equipped for PHIL simulation:

- AC / DC measurements (U, I, P, Q, S, f, …)
- Linear sources (AC; DC)
- Grid impedances (free programmable)
- 4-wire power measurement (MIMO)
Index of Contents

- Introduction
- Advanced Laboratory Testing
  - Methods
  - Equipment
  - Expertise
- Use Cases Proposal (SIRFN Project Activity)
  - RLC – Anti Islanding Testing (PHIL)
  - LVRT – Ride Through Testing (PHIL)
  - ICT – Communication emulation (CoSim, CHIL)
- Next Steps & Invitation
Expertise

Encouragement: Machinery & Know-How both are very suitable upgrade of the laboratory setup (advanced Testing methods).

In low voltage grids commonly used components have to be integrated into the PHIL simulation:

- Power Amplification Unit
  - Switched mode amplifiers (lower BW)
  - Linear amplifiers (higher BW)

- Real Time Computing System (standard products)

- Component Modelling
  - Passive (R, L, C, grid impedances, nonlinear devices)
  - Active (PV inverters, converters, motor drives)

Know-How for P/CHIL and CoSim analysis takes time and effort!
→ Commitment of the management
Index of Contents

- Introduction
- Advanced Laboratory Testing
  - Methods
  - Equipment
  - Expertise
- Use Cases Proposal (SIRFN Project Activity)
  - 1) RLC – Anti Islanding Testing (PHIL)
  - 2) LVRT – Ride Through Testing (PHIL)
  - 3) ICT – Communication emulation (CoSim, CHIL)
- Next Steps & Invitation
Use Case 1: RLC – Anti Islanding Testing (PHIL)

DuT - matched conditions:
- $f_{res} = 50.0$ Hz
- $P_{load} = 2.00$ kW
- $Q_L = 4.30$ kW
- $Q_C = 4.30$ kW
- $Q_f = 2.15$

trip time = 1.5 sec

DuT - mismatched conditions:
- $f_{res} = 49.6$ Hz
- $P_{load} = 2.00$ kW
- $Q_L = 4.27$ kW
- $Q_C = 4.30$ kW
- $Q_f = 2.14$

trip time > 5 sec
Use Case 1: RLC – Anti Islanding Testing (PHIL)

<table>
<thead>
<tr>
<th>relative power</th>
<th>P</th>
<th>Q_L/Q_L_res</th>
<th>Q_L</th>
<th>Q_C</th>
<th>P</th>
<th>Q_R</th>
<th>t_max</th>
<th>t_max</th>
<th>t_off</th>
<th>t_off</th>
<th>t_off</th>
<th>t_off</th>
<th>t_off</th>
<th>t_off</th>
</tr>
</thead>
<tbody>
<tr>
<td>(%)</td>
<td>(%)</td>
<td>(kVar)</td>
<td>(kVAR)</td>
<td>(kW)</td>
<td>-1</td>
<td>(s)</td>
<td></td>
<td></td>
<td>(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>operation point 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{WR,AC} = 2000 W</td>
</tr>
<tr>
<td>U_{AC} = 230.0 V</td>
</tr>
<tr>
<td>I_{AC} = 11.0 A</td>
</tr>
<tr>
<td>U_{DC} = 450.0 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>50%</th>
<th>100%</th>
<th>101%</th>
<th>102%</th>
<th>103%</th>
<th>104%</th>
<th>105%</th>
<th>99%</th>
<th>98%</th>
<th>97%</th>
<th>96%</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.43</td>
<td>4.47</td>
<td>4.52</td>
<td>4.56</td>
<td>4.61</td>
<td>4.65</td>
<td>4.39</td>
<td>4.34</td>
<td>4.30</td>
<td>4.25</td>
<td>4.21</td>
</tr>
<tr>
<td></td>
<td>4.46</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>2.222</td>
<td>2.234</td>
<td>2.245</td>
<td>2.256</td>
<td>2.267</td>
<td>2.277</td>
<td>2.211</td>
<td>2.2</td>
<td>2.189</td>
<td>2.178</td>
<td>2.166</td>
</tr>
<tr>
<td></td>
<td>(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P(f) and Q(U) - with Hyst.</th>
<th>P(f) and P(U) - with Hyst.</th>
<th>P(f) and Q(U) - no Hyst.</th>
<th>P(f) and P(U) - no Hyst.</th>
<th>P(f) and Q(U) - no Hyst.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
<td>P</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>0.16</td>
<td>0.12</td>
<td>0.17</td>
<td>0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>0.20</td>
<td>0.16</td>
<td>0.17</td>
<td>0.20</td>
<td>0.21</td>
</tr>
<tr>
<td>0.20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.14</td>
<td>0.17</td>
<td>0.14</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>0.13</td>
<td>0.33</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
</tbody>
</table>

P/Q controls activated

No P/Q controls activated
Ad 1) “Anti-Islanding Testing via PHIL” (source: NREL)

• By modeling the distribution system point of common-coupling (PCC) complex impedance with a higher bandwidth than the PV inverter’s anti-islanding function, it is possible to evaluate the PV inverter’s performance as if it were installed on the distribution circuit.
Ad 1) “AI Testing via PHIL – Initial Results” (source: NREL)

- PHIL testing is able to emulate traditional AI lab testing – implications for future IEEE 1547.a standards development

- PHIL AI testing is capable of finely tuning load to generation – impact on AI performance evaluation is significant
Index of Contents

- Introduction
- Advanced Laboratory Testing
  - Methods
  - Equipment
  - Expertise
- Use Cases Proposal (SIRFN Project Activity)
  - RLC – Anti Islanding Testing (PHIL)
  - LVRT – Ride Through Testing (PHIL)
  - ICT – Communication emulation (CoSim, CHIL)
- Next Steps & Invitation
Use Case 2: LVRT – Ride Through Testing (PHIL/CHIL)

- **Application:**
  - Testing and validation of LV and HVRT capabilities of DER inverters
  - Testing and validation of FRR (dynamic grid support) capabilities

- **Features & benefits**
  - Allows flexible testing multiple fault locations and parameters
  - Easy variation of grid characteristics
  - Feedback from DER on fault will be taken into account
  - Possible to assess interaction of multiple DER

---

Source: TC2007 German Transmission Code
Source: FprTS 50549-1
Use Case 2: LVRT – Ride Through Testing (PHIL/CHIL)

FRT Fault Ride Through Tests:

- Implementation of impedance network in real time (identical to true FRT test setup according to current standards)
  - Switched mode amplifiers (lower BW)
  - Linear amplifiers (higher BW)

- Advantage of real time simulation:
  - Introduction of measured grid fault scenarios in RTS
  - Physical effects (transf. saturation, etc. can be modelled in RT and run in PHIL simulation)
  - Automated test protocol for a series of voltage dips (suitable for PHIL and CHIL simulation)

- Verification with well-known FRT behaviour of existing components
Use Case 2: LVRT – Ride Through Testing (PHIL/CHIL)

Proposed Network to be implemented in RT:
Index of Contents

- Introduction
- Advanced Laboratory Testing
  - Methods
  - Equipment
  - Expertise
- Use Cases Proposal (SIRFN Project Activity)
  - RLC – Anti Islanding Testing (PHIL)
  - LVRT – Ride Through Testing (PHIL)
  - ICT – Communication emulation (CoSim, CHIL)
- Next Steps & Invitation
Use Case 3: ICT – Communication emulation (CoSim, CHIL)

Proposed Test Scenarios (ICT - Communication):

- Emulation of state-of-the-art communication test protocols (SIRFN Project ‘ Test Scenarios … ‘, etc.)

- Simulation of remote control and control interaction of different used test protocols

→ Outlook:
Integration of ICT Co Simulation into CHIL or even PHIL simulation scenarios

Source: Lawrence Berkley National Laboratories
Index of Contents

- Introduction
- Advanced Laboratory Testing
  - Methods
  - Equipment
  - Expertise
- Use Cases Proposal (SIRFN Project Activity)
  - RLC – Anti Islanding Testing (PHIL)
  - LVRT – Ride Through Testing (PHIL)
  - ICT – Communication emulation (CoSim, CHIL)
- Next Steps & Invitation
Invitation for the SIRFN participants

Member list: (Asia / Europe / America):

- **Asia**: 12 participants
- **America**: 4 participants
- **Europe**: 8 participants

<table>
<thead>
<tr>
<th>Given Name</th>
<th>Company / Organization</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kazuo</td>
<td>YOSHINO Consultant Co.</td>
<td>Japan</td>
</tr>
<tr>
<td>de Jong</td>
<td>DNV GL - R&amp;I</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Shah</td>
<td>Integrated Alternate Solution</td>
<td>Pakistan</td>
</tr>
<tr>
<td>tadao</td>
<td>sogoport service co.,ltd</td>
<td>Japan</td>
</tr>
<tr>
<td>Johnson</td>
<td>Sandia National Labs</td>
<td>United States</td>
</tr>
<tr>
<td>Hamilton</td>
<td>Brookhaven National Lab</td>
<td>United States</td>
</tr>
<tr>
<td>Conklin</td>
<td>U.S. Department of Energy</td>
<td>United States</td>
</tr>
<tr>
<td>Calin</td>
<td>European Distributed Energy Resources</td>
<td>Germany</td>
</tr>
<tr>
<td>HIROSHI</td>
<td>Mitsubishi Research Institute</td>
<td>Japan</td>
</tr>
<tr>
<td>Heckmann</td>
<td>Fraunhofer IWES</td>
<td>Germany</td>
</tr>
<tr>
<td>Yuka</td>
<td>NEDO</td>
<td>Japan</td>
</tr>
<tr>
<td>Bruendlinger</td>
<td>AIT Austrian Institute of Technology</td>
<td>Austria</td>
</tr>
<tr>
<td>Ota</td>
<td>The University of Tokyo</td>
<td>Japan</td>
</tr>
<tr>
<td>Lundstrom</td>
<td>NREL</td>
<td>United States</td>
</tr>
<tr>
<td>SOLANGE</td>
<td>CITYTELL UNITED ARAB EMIRATES</td>
<td>United Arab Emirates</td>
</tr>
<tr>
<td>Kari</td>
<td>VTT</td>
<td>Finland</td>
</tr>
<tr>
<td>MONJU</td>
<td>DELUXE HAIR TRADING LLC, UNITED ARAB EMIRATES</td>
<td>United Arab Emirates</td>
</tr>
<tr>
<td>HEILSCHER</td>
<td>Ulm University of Applied Sciences</td>
<td>Germany</td>
</tr>
<tr>
<td>Crolla</td>
<td>University of Strathclyde</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Luna</td>
<td>Mardon Advance Trading Inc.</td>
<td>Philippines</td>
</tr>
<tr>
<td>Jun</td>
<td>AIST</td>
<td>Japan</td>
</tr>
<tr>
<td>LEE</td>
<td>EDF</td>
<td>Korea</td>
</tr>
<tr>
<td>Yoshiro</td>
<td>AIST</td>
<td>Japan</td>
</tr>
</tbody>
</table>
Next Steps: Use Cases!

Project Tasks - To be done:

- **Use Case 1: Anti Islanding Test (PHIL)**
  - Implementation in PHIL simulation
  - Verification with conventional testing ($f_{\text{resonance}}$, voltage/current waveforms, etc…)

- **Use Case 2: Fault Ride Through FRT (PHIL / CHIL)**
  - Implementation in PHIL simulation
  - Verification with conventional testing by means of
    - Impedance network
    - Grid simulator with normative grid impedance

- **Use Case 3: Communication Control Testing (CoSim, P/CHIL)**
  - Implementation in CoSim or P/CHIL simulation
  - Verification of the remote and control capability communication protocols integrated in DER networks
Join now for ‘Advanced Lab‘ Testing Methods‘

Thank you!

Roland Bründlinger, Georg Lauss
AIT Austrian Institute of Technology
EES-Energy Department
Vienna, Austria
georg.lauss@ait.ac.at